Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e16901, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436033

RESUMO

Background: First metatarsophalangeal joint (MTP-1) arthrodesis is a commonly performed procedure in the treatment of disorders of the great toe. Since the incidence of revision after MTP-1 joint arthrodesis is not insignificant, a medial approach with a medially positioned locking plate has been proposed as a new technique. The aim of the study was to investigate the effect of the application of a lag screw on the stability and strength of first metatarsophalangeal joint arthrodesis with medial plate. Methods: The bending tests in a testing machine were performed for models of the first metatarsal bone and the proximal phalanx printed on a 3D printer from polylactide material. The bones were joined using the locking titanium plate and six locking screws. The specimens were divided into three groups of seven each: medial plate and no lag screw, medial plate with a lag screw, dorsal plate with a lag screw. The tests were carried out quasi-static until the samples failure. Results: The addition of the lag screw to the medial plate significantly increased flexural stiffness (41.45 N/mm vs 23.84 N/mm, p = 0.002), which was lower than that of the dorsal plate with a lag screw (81.29 N/mm, p < 0.001). The similar maximum force greater than 700 N (p > 0.50) and the relative bone displacements lower than 0.5 mm for a force of 50 N were obtained for all fixation techniques. Conclusions: The lag screw significantly increased the shear stiffness in particular and reduced relative transverse displacements to the level that should not delay the healing process for the full load of the MTP-1 joint arthrodesis with the medial plate. It is recommended to use the locking screws with a larger cross-sectional area of the head to minimize rotation of the medial plate relative to the metatarsal bone.


Assuntos
Artrodese , Articulação Metatarsofalângica , Artrodese/efeitos adversos , Articulação Metatarsofalângica/cirurgia , Placas Ósseas , Parafusos Ósseos , Extremidades
2.
PeerJ ; 11: e15805, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583909

RESUMO

The functional biomechanics of the lumbar spine have been better understood by finite element method (FEM) simulations. However, there are still areas where the behavior of soft tissues can be better modeled or described in a different way. The purpose of this research is to develop and validate a lumbar spine section intended for biomechanical research. A FE model of the 50th percentile adult male (AM) Total Human Model for Safety (THUMS) v6.1 was used to implement the modifications. The main modifications were to apply orthotropic material properties and nonlinear stress-strain behavior for ligaments, hyperelastic material properties for annulus fibrosus and nucleus pulposus, and the specific content of collagenous fibers in the annulus fibrosus ground substance. Additionally, a separation of the nucleus pulposus from surrounding bones and tissues was implemented. The FE model was subjected to different loading modes, in which intervertebral rotations and disc pressures were calculated. Loading modes contained different forces and moments acting on the lumbar section: axial forces (compression and tension), shear forces, pure moments, and combined loading modes of axial forces and pure moments. The obtained ranges of motion from the modified numerical model agreed with experimental data for all loading modes. Moreover, intradiscal pressure validation for the modified model presented a good agreement with the data available from the literature. This study demonstrated the modifications of the THUMS v6.1 model and validated the obtained numerical results with existing literature in the sub-injurious range. By applying the proposed changes, it is possible to better model the behavior of the human lumbar section under various loads and moments.


Assuntos
Anel Fibroso , Disco Intervertebral , Núcleo Pulposo , Adulto , Masculino , Humanos , Análise de Elementos Finitos , Vértebras Lombares
3.
PeerJ ; 9: e12509, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900428

RESUMO

BACKGROUND: Increased mechanical loading and pathological response of joint tissue to the abnormal mechanical stress can cause degradation of cartilage characteristic of knee osteoarthritis (OA). Despite osteoarthritis is risk factor for the development of meniscal lesions the mechanism of degenerative meniscal lesions is still unclear. Therefore, the aim of the study is to investigate the influence of medial compartment knee OA on the stress state and deformation of the medial meniscus. METHODS: The finite element method was used to simulate the stance phase of the gait cycle. An intact knee model was prepared based on magnetic resonance scans of the left knee joint of a healthy volunteer. Degenerative changes in the medial knee OA model were simulated by nonuniform reduction in articular cartilage thickness in specific areas and by a decrease in the material parameters of cartilage and menisci. Two additional models were created to separately evaluate the effect of alterations in articular cartilage geometry and material parameters of the soft tissues on the results. A nonlinear dynamic analysis was performed for standardized knee loads applied to the tibia bone. RESULTS: The maximum von Mises stress of 26.8 MPa was observed in the posterior part of the medial meniscus body in the OA model. The maximal hoop stress for the first peak of total force was 83% greater in the posterior horn and only 11% greater in the anterior horn of the medial meniscus in the OA model than in the intact model. The reduction in cartilage thickness caused an increase of 57% in medial translation of the medial meniscus body. A decrease in the compressive modulus of menisci resulted in a 2.5-fold greater reduction in the meniscal body width compared to the intact model. CONCLUSIONS: Higher hoop stress levels on the inner edge of the posterior part of the medial meniscus in the OA model than in the intact model are associated with a greater medial translation of the meniscus body and a greater reduction in its width. The considerable increase in hoop stresses shows that medial knee OA may contribute to the initiation of meniscal radial tears.

4.
PLoS One ; 16(12): e0260572, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34852005

RESUMO

OBJECTIVE: The purpose of this study was to biomechanically compare the stability of first metatarsophalangeal (MTP1) joint arthrodesis with dorsally and medially positioned plates. METHODS: A physical model of the MTP1 joint consists of printed synthetic bones, a titanium locking plate and screws. In the experiments, samples with dorsally and medially positioned plates were subjected to loading of ground load character in a universal testing machine. Force-displacement relations and relative displacements of bones were recorded. The obtained results were used to validate the corresponding finite element models of the MTP1 joint. Nonlinear finite element simulations of the toe-off phase of gait were performed to determine the deformation and stress state in the MTP1 joint for two positions of the plate. RESULTS: In numerical simulations, the maximum displacement in the dorsal direction was noticed at the tip of the distal phalanx and was equal to 19.6 mm for the dorsal plate and 9.63 mm for the medial plate for a resultant force of 150 N. Lower relative bone displacements and smaller plastic deformation in the plate were observed in the model with the medial plate. Stress values were also smaller in the medially positioned plate and locking screws compared to fixation with the dorsal plate. CONCLUSIONS: A medially positioned locking plate provides better stability of the MTP1 joint than a dorsally positioned plate due to greater vertical bending stiffness of the medial plate. Smaller relative bone displacements observed in fixation with the medial plate may be beneficial for the bone healing process. Moreover, lower stress values may decrease the risk of complications associated with hardware failure.


Assuntos
Artrodese/métodos , Articulação Metatarsofalângica/metabolismo , Fenômenos Biomecânicos , Placas Ósseas , Osso e Ossos , Análise de Elementos Finitos , Humanos , Modelos Anatômicos , Estresse Mecânico
5.
PLoS One ; 13(2): e0193020, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29447236

RESUMO

OBJECTIVE: The purpose of this study was to evaluate the influence of a change in the meniscus cross sectional shape on its position and on the biomechanics of a knee joint. METHODS: One main finite element model of a left knee joint was created on the basis of MRI images. The model consisted of bones, articular cartilages, menisci and ligaments. Eight variants of this model with an increased or decreased meniscus height were then prepared. Nonlinear static analyses with a fixed flexion/extension movement for a compressive load of 1000 N were performed. The additional analyses for those models with a constrained medio-lateral relative bone translation allowed for an evaluation of the influence of this translation on a meniscus external shift. RESULTS: It was observed that a decrease in the meniscus height caused a decrease in the contact area, together with a decrease in the contact force between the flattened meniscus and the cartilage. For the models with an increased meniscus height, a maximal value of force acting on the meniscus in a medio-lateral direction was obtained. The results have shown that the meniscus external shift was approximately proportional to the meniscus slope angle, but that relationship was modified by a medio-lateral relative bone translation. It was found that the translation of the femur relative to the tibia may be dependent on the geometry of the menisci. CONCLUSIONS: The results have suggested that a change in the meniscus geometry in the cross sectional plane can considerably affect not only the meniscal external shift, but also the medio-lateral translation of the knee joint as well as the congruency of the knee joint.


Assuntos
Articulação do Joelho/anatomia & histologia , Articulação do Joelho/fisiologia , Meniscos Tibiais/anatomia & histologia , Meniscos Tibiais/fisiologia , Modelos Anatômicos , Adulto , Fenômenos Biomecânicos , Cartilagem Articular/anatomia & histologia , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/fisiologia , Feminino , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Meniscos Tibiais/diagnóstico por imagem , Modelos Biológicos , Estresse Mecânico
6.
Biomech Model Mechanobiol ; 16(3): 731-742, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27785611

RESUMO

Boundary conditions (BCs) and sample size affect the measured elastic properties of cancellous bone. Samples too small to be representative appear stiffer under kinematic uniform BCs (KUBCs) than under periodicity-compatible mixed uniform BCs (PMUBCs). To avoid those effects, we propose to determine the effective properties of trabecular bone using an embedded configuration. Cubic samples of various sizes (2.63, 5.29, 7.96, 10.58 and 15.87 mm) were cropped from [Formula: see text] scans of femoral heads and vertebral bodies. They were converted into [Formula: see text] models and their stiffness tensor was established via six uniaxial and shear load cases. PMUBCs- and KUBCs-based tensors were determined for each sample. "In situ" stiffness tensors were also evaluated for the embedded configuration, i.e. when the loads were transmitted to the samples via a layer of trabecular bone. The Zysset-Curnier model accounting for bone volume fraction and fabric anisotropy was fitted to those stiffness tensors, and model parameters [Formula: see text] (Poisson's ratio) [Formula: see text] and [Formula: see text] (elastic and shear moduli) were compared between sizes. BCs and sample size had little impact on [Formula: see text]. However, KUBCs- and PMUBCs-based [Formula: see text] and [Formula: see text], respectively, decreased and increased with growing size, though convergence was not reached even for our largest samples. Both BCs produced upper and lower bounds for the in situ values that were almost constant across samples dimensions, thus appearing as an approximation of the effective properties. PMUBCs seem also appropriate for mimicking the trabecular core, but they still underestimate its elastic properties (especially in shear) even for nearly orthotropic samples.


Assuntos
Fenômenos Biomecânicos , Osso Esponjoso/fisiologia , Fêmur/fisiologia , Modelos Biológicos , Osso Esponjoso/diagnóstico por imagem , Elasticidade , Fêmur/diagnóstico por imagem , Análise de Elementos Finitos , Humanos , Estresse Mecânico
7.
PLoS One ; 11(12): e0167733, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936066

RESUMO

OBJECTIVE: Evaluation of the biomechanical interaction between meniscus and cartilage in medial compartment knee osteoarthritis. METHODS: The finite element method was used to simulate knee joint contact mechanics. Three knee models were created on the basis of knee geometry from the Open Knee project. We reduced the thickness of medial cartilages in the intact knee model by approximately 50% to obtain a medial knee osteoarthritis (OA) model. Two variants of medial knee OA model with congruent and incongruent contact surfaces were analysed to investigate the influence of congruency. A nonlinear static analysis for one compressive load case was performed. The focus of the study was the influence of cartilage degeneration on meniscal extrusion and the values of the contact forces and contact areas. RESULTS: In the model with incongruent contact surfaces, we observed maximal compressive stress on the tibial plateau. In this model, the value of medial meniscus external shift was 95.3% greater, while the contact area between the tibial cartilage and medial meniscus was 50% lower than in the congruent contact surfaces model. After the non-uniform reduction of cartilage thickness, the medial meniscus carried only 48.4% of load in the medial compartment in comparison to 71.2% in the healthy knee model. CONCLUSIONS: We have shown that the change in articular cartilage geometry may significantly reduce the role of meniscus in load transmission and the contact area between the meniscus and cartilage. Additionally, medial knee OA may increase the risk of meniscal extrusion in the medial compartment of the knee joint.


Assuntos
Cartilagem Articular/patologia , Articulação do Joelho/patologia , Menisco/patologia , Osteoartrite do Joelho/patologia , Fenômenos Biomecânicos , Cartilagem Articular/anatomia & histologia , Análise de Elementos Finitos , Humanos , Articulação do Joelho/anatomia & histologia , Menisco/anatomia & histologia , Modelos Anatômicos , Estresse Mecânico , Tíbia/anatomia & histologia , Tíbia/patologia , Suporte de Carga
8.
J Biomech ; 48(8): 1356-63, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25892539

RESUMO

We present a three dimensional finite element analysis of stress distribution and menisci deformation in the human knee joint. The study is based on the Open Knee model with the geometry of the lateral meniscus which shows some degenerative disorders. The nonlinear analysis of the knee joint under compressive axial load is performed. We present results for intact knee, knee with complete radial posterior meniscus root tear and knee with total meniscectomy of medial or lateral meniscus. We investigate how the meniscus shape in the cross sectional plane influences knee-joint mechanics by comparing the results for flat (degenerated) lateral and normal medial meniscus. Specifically, the deformation of the menisci in the coronal plane and the corresponding stress values in cartilages are studied. By analysing contact resultant force acting on the menisci in axial plane we have shown that restricted extrusion of the torn lateral meniscus can be attributed to small slope of its cross section in the coronal plane. Additionally, the change of the contact area and the resultant force acting on the menisci as the function of compressive load are investigated.


Assuntos
Meniscos Tibiais/fisiopatologia , Fenômenos Biomecânicos , Cartilagem Articular/patologia , Cartilagem Articular/fisiopatologia , Simulação por Computador , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional , Joelho/fisiopatologia , Traumatismos do Joelho/patologia , Traumatismos do Joelho/fisiopatologia , Meniscos Tibiais/patologia , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...